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Abstract

In algebraic graph theory, the algebraic methods are applied to problems about
graphs. The theory of semirings can also be applied to solve certain social network
problems. Motivated by this, in this paper, we introduce a new notion called S-
valued graphs, combining the algebric structure of semiring with that of graphs.

1. Introduction

Algebraic graph theory [1] can be viewed as an extension of graph theory in which

algebraic methods are applied to problems about the graphs. The ultimate aim is to

translate the properties of graphs into algebraic properties and then using the results

and methods of algebra to reduce theorems about graphs.
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Semiring theory stands with a foot in each of two mathematical domains. On one hand,

semirings are abstract mathematical structures and that study is part of abstract algebra

arising initially from the work of Dedekind [2], Krull [4], Macaulay [5] and others, on

the theory of ideals of a commutative ring and then the more general work of Vandiver

[6]. On the other hand, the moderen interest in semiring arises primarly from the fields

of applied mathematics such as optimization theory, the theory of discrete-dynamical

systems, automata theory and formal language theory as well as from the allied areas

of theoretical computer science, theoretical physics and graph theory. Even though the

concept of semiring was first introduced by H. S. Vandiver in 1934, the developments

of the theory in semirings and ordered semirings have been taking place since 1950.

Jonathan S. Golan [3] has introduced the notion of S−valued graph where he considers

a function g : V × V → S such that g(v1, v2) 6= 0. But nothing more has been dealt.

This motivated us to study graphs whose vertices and edges are assigned values from

the semiring S. Golan considers the S−valued graph by assigning values to edges only.

However we assign values to every vertex of the graph and the weights of an edge is

assigned in relation to the weights of the vertices incident with the edges. Since every

semiring possesses a canonical pre-order, for any edge e = (vi, vj), we can assign the

weight of e as the minimum weights of vi and vj . Such a graph we call it as a S−valued

graph. If S is replaced by I = [0, 1], then the S−valued graph is nothing but a fuzzy

graph. Thus the notion of S−valued graph can be considered as a generalization of

both the graph theory and the fuzzy graph theory.

In this paper, we introduce the notion of S−valued graph where S is any semiring with

a canonical pre-order. We give several examples to illustrate the relation between a

S−valued graph and an ordinary (crisp) graph.

2. Preliminaries

In this section, we recall some basic definitions that are needed for our work.

Definition 2.1 : A semiring (S,+, ·) is an algebraic system with a non-empty set S

together with two binary operations + and · such that

1. (S,+, 0) is a monoid.

2. (S, ·) is a semigroup.
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3. For all a, b, c ∈ S, a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

4. 0 · x = x · 0 = 0 ∀ x ∈ S.

Definition 2.2 : Let (S,+, ·) be a semiring. � is said to be a Canonical Pre-order if

for a, b ∈ S , a � b if and only if there exists c ∈ S such that a+ c = b.

Example 2.3 : Let S = {0, a, b, c} . S is a semiring with the binary operations ’+’ and

‘.’ defined by the following Cayley tables.

+ 0 a b c

0 0 a b c

a a a b c

b b b b c

c c c c b

· 0 a b c

0 0 0 0 0
a 0 a a a

b 0 a a a

c 0 a a a

In S, we define a canonical pre-order �:

0 � 0, 0 � a, 0 � b, 0 � c, a � a, b � b, c � c, a � b, a � c, b � c, c � b

Definition 2.4 : A graph consists of a set of objects V = {v1, v2, · · · } called vertices

and another set E = {e1, e2, · · · } called edges, such that each edge ek is identified with

an unordered pair (vi, vj) of vertices. The vertices (vi, vj) associated with the edge ek
are called the end vertices of ek.

Definition 2.5 : An edge having the same vertex as both of its end vertices is called a

loop. Edges in a graph associated with a given pair of vertices- that is, more than one

edge associated with a given pair of vertices are called parallel edges. A graph that has

neither self-loop nor parallel edges is called a simple graph.

Definition 2.6 : A vertex u of a graph G is said to be incident with an edge e if u is

an end point of e. Any two vertices of a graph which are incident with a common edge

are called adjacent vertices.

Definition 2.7 : A graph is said to be finite if both of its vertex set and edge set are

finite. Empty graph can be defined as a graph in which V = φ and E = φ. A graph

without any edges is called a Null graph. Every vertex in a null graph is an isolated

vertex.

Definition 2.8 : The degree of a vertex in a graph is defined to be the number of edges

incident with that vertex. A graph in which all vertices are of equal degree is called a

regular graph.
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Definition 2.9 : A graph H is said to be a subgraph of a graph G, if all the vertices

and all the edges of H are in G, and each edge of H has the same end vertices as in G.

3. Semiring-Valued Graphs

Definition 3.1 : Let G = (V,E ⊂ V × V ) be a given graph with both V,E 6= φ. For

any semiring (S,+, ·), a semiring-valued graph (or a S−valued graph), GS , is defined

to be the graph GS = (V,E, σ, ψ) where σ : V → S and ψ : E → S is defined to be

ψ(x, y) =
{
min {σ(x), σ(y)} if σ(x) � σ(y) or σ(y) � σ(x)

0 otherwise

for every unordered pair (x, y) of E ⊂ V ×V. We call σ, a S−vertex set and ψ, a S−edge

set of S-valued graph GS .

Henceforth, we call a S−valued graph simply as a S− graph.

Remark 3.2 : The vertices and edges of GS are the vertices and edges as in its

underlying graph. Since every semiring possess a canonical pre-order,σ and ψ are well-

defind. In most general case, both vertices and edges of a S−graph have values in the

semiring S, called S−values. If σ(x) = a for every x ∈ V, and for some a ∈ S then

S−edges of GS alone have S−values. If ψ(x, y) = b for every (x, y) ∈ E, and for some

b ∈ S then S−vertices of GS alone have S−values.

Example 3.3 : Consider the semiring with the canonical pre-order � given in Example

2.3. Let G be the underlying graph given by :

G = (V,E) where V = {v1, v2, v3, v4, v5, v6, v7} and

E = {(v1, v2), (v1, v4), (v1, v6), (v2, v3), (v2, v5), (v2, v7), (v3, v6), (v3, v5), (v4, v7)}.

Corresponding to the graph G, we define the S−graph GS as follows:

Define σ : V → S by

σ(v1) = σ(v3) = σ(v5) = σ(v7) = a;σ(v2) = σ(v4) = σ(v6) = b.

Therefore the S−vertex set of GS = {a, b} . Now define ψ : E → S as follows

ψ(v1, v2) = min {σ(v1), σ(v2)} = min {a, b} = a(∵ a � b)

Similarly, ψ(v1, v2) = ψ(v1, v6) = ψ(v2, v3) = ψ(v2, v5) = ψ(v2, v7) = a

ψ(v3, v5) = ψ(v3, v6) = ψ(v4, v7) = a.
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Then the S− edge set of GS= {a} .
The two graphs are shown below.

Remark 3.4 : Since σ can be defined on V in many ways, the S−graph GS is not

unique for a given underlying graph G.

Definition 3.5 : Let GS = (V,E, σ, ψ) be the S−graph corresponding to a given

underlying graph G = (V,E). An S−graph HS = (P,L, τ, γ) is called a S−subgraph of

GS if H = (P,L) is a subgraph of G with P ⊂ V, L ⊂ E, τ ⊂ σ and γ ⊂ ψ. That is,

τ ⊂ σ ⇒ τ(x) � σ(x), x ∈ P and γ ⊂ ψ ⇒ γ(x, y) � ψ(x, y), (x, y) ∈ L ⊂ P × P.

Definition 3.6 : Let GS = (V,E, σ, ψ) be an S−graph and HS = (P,L, τ, γ) be its

S−subgraph. HS is called an S− subgraph of GS induced by P if P ⊂ V, L ⊂ E, τ(x) =

σ(x), for every x ∈ P and γ(x, y) = ψ(x, y) for every (x, y) ∈ L.
Remark 3.7 : In the S−graph GS , the value of σ on a vertex v will be denoted by

v(σ(v)) and the value of ψ at an edge (vi, vj) will be denoted by ψ(vi, vj) over the edge

(vi, vj).

Example 3.8 : G
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Consider the semiring with canonical pre-order � as given in Example 2.3. Let G =

(V,E) where V = {v1, v2, v3, v4, v5} and

E = {(v1, v2), (v1, v5), (v2, v3), (v2, v5), (v3, v4), (v4, v5)} .
Consider the S−graph GS corresponding to G.

Let P = {v2, v3, v4} and L = {(v2, v3), (v3, v4)} . Let τ(v2) = τ(v3) = a, and τ(v4) = b.

Therefore, τ(v2) = a � σ(v2) = a, τ(v3) = a � σ(v3) = b and τ(v4) = b � σ(v4) = b.

Hence τ ⊂ σ. Now define γ : E → S as follows

γ(v2, v3) = min {τ(v2), τ(v3)} = min {a, a} = a (∵ a � a)

Similarly, γ(v2, v3) = a � ψ(v2, v3) = a; γ(v3, v4) = a � b = ψ(v3, v4)

Therefore γ ⊂ ψ.
Thus the S− subgraph HS = (P,L, τ, γ) is given by

For the S−graph GS be given in this example, define γ(x) = σ(x), ∀x ∈ P
and τ(x, y) = ψ(x, y),∀ ∗ /ll(x, y) ∈ L. Thus the S−subgraph HS(P ) is the subgraph of

GS induced by P = {v1, v2, v3, v4} .
Remark 3.9 : From the above example we observe that H = (P,L) is a subgraph of

G = (V,E) but the S−subgraph HS need not have the same S-values as in GS .

Definition 3.10 : Let GS =(V,E, σ, ψ) be an S− graph and HS = (P,L, τ, γ) be its

S−subgraph. HS is called a spanning S−subgraph of GS if P = V, L ⊂ E, τ(x) = σ(x),

for every x ∈ P and γ(x, y) = ψ(x, y), for every (x, y) ∈ L.
Example 3.11 : Consider the S−graph GS given in Example 3.8. Let P = V ; L =

{v1v2, v2v3, v3v4} ⊂ E. Define τ(v1) = σ(v1); τ(v2) = σ(v2); τ(v3) = σ(v3); τ(v4) =

σ(v4); and γ(v1, v2) = ψ(v1, v2), γ(v2, v3) = ψ(v2, v3), γ(v3, v4) = ψ(v3, v4). Then the

S− subgraph HS is,
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So far, corresponding to a given crisp graph G, and a given semiring S we have obtained

a S− graph GS . In the following we discuss the method to obtain a crisp graph from a

given S− graph.

Definition 3.12 : Let GS =(V,E, σ, ψ) be an S−graph where (S,+, ·) is a semiring

with � . For any t ∈ S, Gt = (σt, ψt) is a crisp graph with the vertex set

σt = {x ∈ V/t � σ(x)} and the edge set ψt = {(x, y) ∈ E/t � ψ(x, y)} .

Example 3.13 : Let (S = {0, a, b, c} ,+, ·) be a semiring with the following Cayley

tables:

+ 0 a b c

0 0 a b c

a a b c c

b b c c c

c c c c c

· 0 a b c

0 0 0 0 0
a 0 a b c

b 0 b c c

c 0 c c c

Let � be a canonical pre-order in S, given by

0 � 0, 0 � a, 0 � b, 0 � c, a � a, a � b, a � c, b � b, b � c, c � c

Consider the S− graph GS , where σ : V → S is defined by

σ(v1) = σ(v4) = a;σ(v2) = σ(v5) = b and σ(v3) = c

and ψ : E → S by ψ(v2, v3) = ψ(v2, v5) = ψ(v3, v5) = b and

ψ(v1, v2) = ψ(v1, v3) = ψ(v1, v4) = ψ(v1, v5) = ψ(v2, v4) = ψ(v3, v4) = a
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Suppose t = b. Then

σb = {v ∈ V/b ≤ σ(v)} ⇒ σb = {v2, v3, v5}

ψb = {(x, y) ∈ V × V / t ≤ ψ(x, y)} ⇒ ψb = {(v2, v3), (v2, v5), (v3, v5)} .

Therefore the required crisp graph Gb, corresponding to GS is

Remark 3.14 : Clearly σt ⊂ V and ψt ⊂ E. Suppose there is no other element in S

which is related to t. Then σt = {x ∈ V / t � σ(x) = t} and ψt = {(x, y) ∈ E / t � ψ(x, y) = t} .
We call Gt = (σt, ψt) as a level graph of the S−graph GS . Two cases arise.

Case 1: If there is no edge whose incident vertices having S−values as t then ψt is

empty. We call Gt, a null graph.

Case 2: If there is no vertex x that assigns S−value as t, then both σt and ψt are

empty. In this case, we call Gt, an empty graph. We rule out this possibility.

Theorem 3.15 : Let GS be a S− graph. If a S-graph HS is a S-subgraph of GS then

Ha is a subgraph of Ga, for any a ∈ S.
Proof : Let GS = (V,E, σ, ψ) be a given S graph. Let HS = (P,L, τ, γ) be a S subgraph

of GS .
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Therefore P ⊂ V, L ⊂ E, τ ⊂ σ and γ ⊂ ψ

where τ ⊂ σ ⇒ τ(v) � σ(v), for all v ∈ P, and γ ⊂ ψ ⇒ γ(vi, vj) � ψ(vi, vj) for all

(vi, vj) ∈ L. Let a ∈ S. Let Ha = (τa, γa) where

τa = {v ∈ P / a � τ(v)} ; and γa = {(vi, vj) ∈ L / a � γ(vi, vj)}

And Ga = (σa, ψa) where

σa = {v ∈ V/a � σ(v)} ; and ψa = {(vi, vj) ∈ E/a � ψ(vi, vj)}

Claim : Ha is a subgraph of Ga.

Let v ∈ τa ⇒ a � τ(v) � σ(v)⇒ a � σ(v)⇒ v ∈ σa. Therefore

τa ⊂ σa (3.1)

For, (vi, vj) ∈ γa, a � γ(vi, vj) � ψ(vi, vj)⇒ (vi, vj) ∈ ψa. Therefore

γa ⊂ ψa (3.2)

From (3.1) and (3.2), we conclude that Ha is a subgraph of Ga.

Remark 3.16 : Since for any crisp graph Ha, a subgraph of Ga, the existance of their

S-graphs are not unique, HS need not be a S subgraph of GS .

Definition 3.17 : If σ(x) = a,∀ x ∈ V and some a ∈ S then the corresponding S−
graph GS is called a vertex regular S−graph (or simply vertex regular).

Definition 3.18 : An S− graph GS is said to be an edge regular S−graph (or simply

edge regular) if ψ(x, y) = a for every (x, y) ∈ E and some a ∈ S.

Example 3.19 : Consider the S−graph GS
1 as in Example 3.3, where σ(vi) = a,∀ vi ∈

V.
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Here GS
1 is a vertex regular S− graph and GS is an edge regular S− graph but not a

vertex regular S− graph.

Definition 3.20 : An S− graph Gs is said to be S−regular if it is both a vertex regular

and an edge regular, S− graph.

Example 3.21 : Consider the S− graph GS given in Example 3.3.

Here σ(vi) = a, for every vi ∈ V and ψ(vi, vj) = a, for every (vi, vj) ∈ E.

Then GS is both vertex and edge regular and hence an S− regular graph.

We present here an example of a S− graph, which is neither a vertex regular nor an

edge regular S− graph.

Example 3.22 : Let (S = {0, a, b, c} ,+, ·) be a semiring with the following Cayley

tables:

+ 0 a b c

0 0 a b c

a a b c c

b b c c c

c c c c c

· 0 a b c

0 0 0 0 0
a 0 a b c

b 0 b c c

c 0 c c c

Let � be a canonical pre-order in S given by :

0 � 0, 0 � a, 0 � b, 0 � c, a � a, b � b, c � c, a � b, a � c, b � c

Let G = (V,E) be the given graph with V = {v1, v2, v3, v4, v5}

and E = {(v1, v2), (v1, v3), (v2, v4), (v3, v5), (v3, v4), (v4, v5)} . Then
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The S−graph GS given above is neither a vertex regular nor an edge regular S−graph.

Lemma 3.23 : Every vertex regular S− graph is an edge regular S− graph.

Proof : Let Gs = (V,E, σ, ψ) be a vertex regular S− graph.

That is σ(vi) = a for every vi ∈ V and some a ∈ S.
Let (vi, vj) ∈ E be arbitrary. Then

ψ(vi, vj) = min {σ(vi), σ(vj)} = min {a, a} = a (∵ a � a)

Therefore ψ(vi, vj) = a for every (vi, vj) ∈ E, proving that Gs is an edge regular

S−graph.

Remark 3.24 : Converse of the above lemma is not true. That is every edge regular

S−graph is not a vertex regular S−graph as seen from Example 3.19.

Theorem 3.25 : Gs is S-regular graph iff Gs is vertex regular.

Proof : Let Gs be S-regular. By definition of S-regular graph, we get Gs is vertex

regular graph.

Conversely, assume that Gs is a vertex regular S− graph.

Then by lemma 3.23 Gs is an edge regular S−graph.

Thus Gs is an S-regular graph.

Remark 3.26 : In the crisp graph theory, regularity is defined using the notion of ver-

tex degree. But in our work the regularity is defined in terms of S−values corresponding

to the vertex set defined by σ, and the edge set defined by ψ.

4. Conclusion

Borrowing the idea from Golan [3], we have introduced the notion of a semiring-valued

graph in this paper. This generalizes the notions of both the crisp and fuzzy graph

theory. In our future work we will analyze the notion of regularity of
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S− graphs including the degree of a vertex as in the case of crisp graph theory.
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