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Abstract
Shadow spaces are quotient spaces of A−spaces. They provide a better understand-
ing to the concept of A−spaces using their corresponding posets. In this paper, we
introduce and investigate new types of A−space called upper bounded and lower
bounded A−spaces. Then we study connectedness and types of mixed connected-
ness. we prove that an A−space X is i − j−connected iff its shadow space [X] is
i− j−connected, for i, j ∈ {α, P, S, SP, γ}.

1. Introduction

An Alexandroff space (briefly A−space) (or minimal neighborhood space) X is a topo-

logical space in which the arbitrary intersection of open sets is open. In these spaces,
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each element x has a minimal open neighborhood set V (x) which is the intersection of

all open sets containing x. For every To A−space (X, τ), there is a corresponding poset

(X,≤τ ) in one to one and onto way, where each one of them is completely determined by

the other. If (X,≤) is a poset, then B = {↑ x : x ∈ X} forms a base for a T0 Alexandroff

topology on X denoted by τ≤. Moreover, if (X, τ) is an A-space, we define the pre-

order ≤τ , called (Alexandroff ) specialization pre-order as follows: a ≤τ b if and only if

a ∈ {b}. This specialization pre-order is a partial order if and only if (X, τ) is To. So,

we consider (X, τ(≤)) to be a To A−space (X, τ) together with its specialization order

≤. We see that ∀x ∈ X, V (x) equals ↑ x; the up set of x in the corresponding poset

and x =↓ x; the down set of x. A poset (X,≤) satisfies the ascending chain condition

(ACC) if for any increasing sequence x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · in X, there exists

k ∈ N such that xk = xk+1 = · · · . The dual of (ACC) is the descending chain condition

(DCC). If a poset satisfies both ACC and DCC, we say that X is of finite chain

condition (FCC). Given a poset (X,≤), the set of all maximal elements is denoted

by M(X) (or simply M) and the set of all minimal elements is denoted by m(X) (or

simply m). Moreover, for each x ∈ X, we define x̂ to be the set of all maximal elements

grater than or equal to x and x̌ to be the set of all minimal elements less than or equal

to x. That is, x̂ =↑ x ∩M and x̌ =↓ x ∩m.

A To A−space whose corresponding poset satisfies the ACC is called Artinian To

A−space, and whose corresponding poset satisfies the DCC is called Noetherian To

A−space [11]. An upper bounded T0 A−space is introduced as a generalization of Ar-

tinian T0 A−spaces. A T0 A−space is an upper bounded T0 A−space (briefly a UB T0

A−space) [5]S if every chain of points in the corresponding posets is bounded above.

There is a detail study of these spaces in [12]. A T0 A−space is an lower bounded

T0 A−space (briefly an LB T0 A−space) [5] if every chain of points in the correspond-

ing poset is bounded below. If X is a topological space and D a partition of X, then

D can be topologized as follows: F ⊆ D is open in D iff
⋃
F∈F F is open in X. The

topology τD on D is called the quotient topology of X induced by D, and the open sets U

in X where U =
⋃
{F ∈ F : F ∈ τD} are called saturated. It should be noted that not all

open sets in X are saturated. Nevertheless, each saturated open set has a corresponding

open set in D. So there is a one to one correspondence between τD and the collection of

all saturated open sets in X. For a topological space X, an equivalence relation ∼ can
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be defined on X as follows: x ∼ y iff x and y cannot be separated by open sets. The

set of all equivalence classes [X] forms a partition on X with quotient topology satisfies

the separation axiom T0. Again, not all open sets in X are saturated. In [?], it was

proved that if the topology on X is Alexandroff, then each open set in X is saturated

with respect to the equivalence relation ∼. Hence there is a one to one correspondence

between τ on X and the quotient topology on [X]. So, the quotient topology on [X]

is called the shadow topology of τ and denoted by τs. The shadow space ([X], τs) is a

T0 A−space and has a corresponding poset ([X],≤s). For two classes [a], [b] in [X], we

have [a] ≤ [b] iff b ∈ V (a) iff V (b) ⊆ V (a) iff a ∈ b. For a subset A ⊆ X, we define

[A] = {[a] : a ∈ A}. It may happen that A 6= B but [A] = [B]. In Some of our previous

studies see [10] and [13], we observed that the relation between A−spaces and their

shadow spaces is very interesting and used this relation in introducing new definitions

and concepts defined on A−shadow spaces and carry over to any A−space. We gave

a study of preopen, semi-open, and α− open sets on A−spaces. Then we proved that

an A−space is connected (compact) iff its shadow space [X] is connected (compact).

From now on, and for any A−space (X, τ), we will consider its A-shadow space ([X], τs).

2. Preliminaries

A subfamily mx of a power set P(X) of a nonempty set X is said to be a minimal

structure on X, if ∅, X ∈ mx and
⋃
Aα ∈ mx whenever Aα ∈ mx. The sets in mx are

caled mx-open sets, and the sets where their complements in mx are called mx-closed

sets. It is clear that an arbitrary intersection of mx-closed sets is mx-closed set. For

A ⊆ X, we define mx interior and mx closure of A as follows:

mx − Int(A) =
⋃
{U : U ⊆ A and U ∈ mx}, and

mx − Cl(A) =
⋂
{F : A ⊆ F and X\F ∈ mx}.

It is obvious that mx − Int(A) is the largest mx-open set inside A and mx − Cl(A) is

the smallest mx-closed set containing A. Let (X, τ) be a topological space. A subset

A of X is said to be α−open [18] (resp. preopen [2], semi-open [17], b-open [3] (equiv.

γ−open [1]), β−open [16] (equiv. semi-preopen [4])) if A ⊆ Ao
o

(resp. A ⊆ A
o

, A ⊆ Ao ,

A ⊆ A
o

∪Ao , A ⊆ A
o

). A set F is called j−closed for j ∈ {α, semi, pre, b, β} if X\F is

j−open. A set F is called j−clopen for j ∈ {α, semi, pre, b, β} if F is both j−open and
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j−closed. The family of all α−open (resp. preopen, preclosed, semi-open, semi-closed,

b-open, b-closed, β−open, β−closed) is denoted by τα (resp. PO(X), PC(X), SO(X),

SC(X), BO(X), BC(X), SPO(X), SPC(X)). We have the following facts: The

collection τα forms a topology on X [18]. τα = PO(X)∩SO(X) [21]. PO(X)∪SO(X) ⊆
BO(X) ⊆ SPO(X) [3]. τ ⊆ τα (resp. τ ⊆ JO(X) for J ∈ {S, P, B, SP}). For

j ∈ {semi, pre, b, β}, the union (intersection) of any family of j−open (j−closed) sets

is j−open (j−closed). Thus for J ∈ {S, P, B, SP}, JO(X) is a minimal structure

on X. If a minimal structure mx = τα (resp. PO(X), SO(X), BO(X), SPO(X)),

then mx− Int(A) is denoted by Intα(A) (resp. pInt(A), sInt(A), bInt(A), βInt(A)).

Similarly mx − Cl(A) is denoted by Clα(A) (resp. pCl(A), sCl(A), bCl(A), βCl(A)).

If X is a UB T0 A−space, then PO(X) = τα and PO(X) ⊆ SO(X). [12]

Proposition 2.1 [12] : Let X be a UB T0 A−space, and A is a preopen subset of X.

Then A is a UB T0 A−space.

Proposition 2.2 [12] : Let X be a T0 UB A−space. A set A ⊆ X is preopen iff x̂ ⊆ A
for every x ∈ A.

Proposition 2.3 [12] : let X be a UB T◦ A−space. Then A is semi-open set if and

only if x̂ ∩A 6= ∅ ∀x ∈ A.

Proposition 2.4 [13] : Let X be an A−space and A ⊆ X . Then [A] as a subspace of

the shadow space [X] is the same as the shadow space of the subspace (A, τA) of X.

Proposition 2.5 [13] : Let X be an A−space and A ⊆ X. Then A is preopen iff [A]

is preopen.

3. Upper Bounded A−spaces

In order to generalize some of basic concepts and ideas to be known in any A−space,

we first start with a chain. A chain is a concept that related to the category of posets,

and hence related in some sence to A−spaces that satisfy the separation axiom T0. In

the following definitions, we generalize this concept and others to any A−space.

Definition 3.1 : Let X be an A−space. A subset C ⊆ X is said to be a chain if

for every x, y ∈ C either V (x) ⊆ V (y) or V (y) ⊆ V (x). A subset B ⊆ X is said to

be bounded above (resp. below) if there exist z ∈ X such that V (z) ⊆ V (x) (resp.

V (x) ⊆ V (z)) for every x ∈ B. B is bounded if it is bounded above and bounded below.

Definition 3.2 : An A−space X is called an upper (resp. a lower) bounded (briefly,
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UB, (resp. LB)) if every chain in X is bounded above (resp. bounded below). X is

bibounded (briefly BB) if every chain in X is bounded, and hence X is both UB and

LB.

One can easily prove the following:

Proposition 3.3 : If C is a chain in an A−space X, then the set [C] is a chain in the

corresponding poset ([X],≤s) of the shadow space [X].

Propoition 3.4 : Let X be an A−space and C a chain in X. Then C is bounded above

iff the chain [C] is bounded above in the poset ([X],≤s).
Corollary 3.5 : An A−space X is UB iff its shadow space [X] is UB.

Remark 3.6 : Let X be a UB T0 A−space and Y an A−space such that X = [Y ].

Then Y is a UB A−space. In other words, all A−spaces, where X is their shadow space

are UB A−spaces.

Proposition 3.7 : Let X be a UB A−space and A a preopen subset of X. Then the

subspace A is a UB A−space.

Proof : [A] is a preoen subset of the shadow space [X]. So by Proposition 2.1 [A] is a

UB T0 A−space. Hence by Corollary 3.5, A is a UB A−space. 2

Definition 3.8 [13] : Let X be an A−space. An element x ∈ X is said to be maximal

(resp. minimal) if V (x) = V (z) whenever V (z) ⊆ V (x) ( resp. whenever V (z) ⊇ V (x)

). We denote the set of maximal elements of X by M(X) (or simply M), and the set of

minimal elements of X by m(X) (or simply m). We define x̂ = V (x)∩M and x̌ = x∩m.

The following theorems, in various forms and with simple modifications, are proved for

Artinian (Notherian) A−spaces in [13]. They still true in UB A−space without essential

change in the mechanics of the proofs. The heart of the proofs of the theorems lie in

the observation that; for both Artinian and UB A−spaces, M 6= ∅ and x̂ 6= ∅ for all

x ∈ X. Similarly, m 6= ∅ and x̌ 6= ∅ for all x ∈ X for both Notherian and LB A−spaces.

Proposition 3.9 : Let X be a UB A−space, then M 6= ∅.
Proposition 3.10 : Let X be a UB (resp. LB) A−space, then M is open (resp. m is

closed) set in X .

Proposition 3.11 : If X is a UB (resp. a LB) A−space, then x ∈ M iff [x] ∈ [M ]

(resp. x ∈ m iff [x] ∈ [m].)

Proposition 3.12 : Let X be a UB A−space. Then V (x) ⊆M iff [V (x)] ⊆ [M ].

Proposition 3.13 : Let X be a UB A−space and A a preopen subset of X. Then
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(1) [M(A)] = M [A].

(2) Cl(A) = Cl(M(A)).

(3) M(A) ⊆M .

Proposition 3.14 : Let X be a UB A−space, and let A ⊆ X. If A is open (resp.

closed), then x̂ ⊆ A (resp. x̌ ⊆ A) for all x ∈ A.

Proposition 3.15 : If X is a UB (resp. a LB) A−space, then [M ] = Ms (resp.

[m] = ms).

Proposition 3.16 : If X is a UB (resp. LB)A−space, then x̂ 6= ∅ (resp. x̌ 6= ∅).
Proposition 3.17 : Let X be a UB A−space, A ⊂ X. If x̂ ⊆ A for every x ∈ A, then

A is preopen.

Proof : If x̂ ⊆ A, then [̂x] ⊆ [A]. By Proposition 2.2 [A] is preopen. Hence by

Proposition 2.5 we get that A is preopen. 2

Proposition 3.18 : Let X be a UB A−space. If a set A ⊆ X is semi-open, then

x̂ ∩A 6= ∅ for all x ∈ A.

Proof : If x ∈ A, then x ∈ Cl(Int(A)). So V (r) ⊆ V (x) for some r ∈ Int(A), which

implies that V (r) ⊆ A. Take y ∈ r̂ ⊆ M . Then V (y) ⊆ V (r) ⊆ V (x). Therefore

y ∈ x̂ ∩A. 2

The converse of the above two propositions need not be true as the following example

shows:

Example 3.19 : Let X = {1, 2, 3, 4, 5} and τ = {∅, X, {3}, {4, 5}, {3, 4, 5}}. So M =

{3, 4, 5}. If A = {1, 2, 4, 5}, then A is preopen. Moreover 1̂ = V (1)∩M = {3, 4, 5} * A.

If B = {1, 2, 5}, then B is not semi-open. Moreover 1̂ = 2̂ = {3, 4, 5}, and 5̂ = {4, 5}.
So x̂ ∩B 6= ∅ for every x ∈ B.

4. Connectedness

A topological space (X, τ) is said to be connected (resp. preconnected) if X cannot be

expressed as a union of two non-empty and disjoint open (resp. preopen) subsets of X.

X is said to be disconnected (resp. predisconnected) if it is not connected (resp. precon-

nected). When X is connected, X contains a nontrivial clopen set. X is hyperconnected

if every non-empty open subset of X is dense. If X is not hyperconnected, then it is

hyperdisconnected.
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Proposition 4.1 [13] : An A−space X is connected iff [X] is connected.

Propostion 4.2 [10] : Let X be an A−space, A ⊆ X. Then A is dense iff [A] is dense

in [X].

Proposition 4.3 [11] : Let X be a T0 A−space. If X has a dense subset consisting of

a single point, then X is connected.

Proposition 4.4 : Let X be an A−space. If [x] is dense in X, for some x ∈ X, then

X is connected.

Proof : By Proposition 4.2, {[x]} is dense in [X], so by Proposition 4.3, [X] is connected

and hence X is connected. 2

Proposition 4.5 [12] : Let X be a UB T0 A−space and |M | > 1. If X is connected,

then x is not open for all x ∈M .

Proposition 4.6 : Let X be a connected UB A−space. If |M | > 1 and there is

x, y ∈M such that V (x) 6= V (y), then Cl(x) is not open for all x ∈M .

Proof : [X] is connected, [x], [y] ∈ [M ] and [x] 6= [y]. So |[M ]| > 1. By Proposition 4.5,

Cls([x]) is not open and so [Cl(x)] is not open in [X]. Therefore Cl(x) is not open in

X. 2

Recall that in any topological space, Int(A∪B) = Int(A)∪Int(B) whenever A∩B = ∅.
Proposition 4.7 : Let X be a UB A−space with a set of maximal elements M . Then

X is connected iff for any proper subset C of M , C ∩M \ C 6= ∅.
Proof : If C ∩M \ C = ∅, then C ⊆ X \ (M \ C) = ((M \ C)

c
)

o
= (M c ∪ C)

o
=

(M
c
)

o ∪Co
= (M)

c ∪Co
. Since C ∩M

c

= ∅, then C ⊆ Co
and so C is clopen nonempty

set. Conversely, let X = P ∪Q where P and Q are two nonempty disjoint open subsets

of X. Let C = M ∩ P . By Proposition 3.13 (3), C = M(P ). This implies that

C = M(P ) = P = P . Similarly M \ C = Q. Therefore C ∩M \ C = ∅. 2

Proposition 4.8 [10] : An A−space X is hyperconnected iff its shadow space [X] is

hyperconnected.

Proposition 4.9 [16] : Let X be a T0 A−space. If X contains a maximum element

>, then X is hyperconnected.

Proposition 4.10 : Let X be a UB A−space. If V (x) = V (y) for all x, y ∈ M , then

X is hyperconnected.

Proof : If V (x) = V (y) for all x, y ∈M , then [x] = [y] . Hence |[M ]| = 1. Equivalently

[X] contains a top element. Therefore by Proposition 4.5, [X] is hyperconnected. By
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Proposition 4.8, X is hyperconnected. 2

Proposition 4.11 : Let X be an A−space. If X is preconnected, then [X] is precon-

nected.

Proof : If [X] is predisconnected, then there is disjoint preopen sets [U ], [V ] such that

[X] = [U ]∪[V ]. By Proposition 2.5, U and V are preopen sets. Let U∗ =
⋃
{[x] : x ∈ U}

and V ∗ =
⋃
{[x] : x ∈ V }. Then, we have X = U∗ ∪ V ∗, U∗ ∩ V ∗ = ∅ and U∗, V ∗ are

preopen sets. Thus X is predisconnected. 2

Directly from the definition, if a topological space X is preconnected, then it is con-

nected. In [?], it was proved that if X is a UB T0 A−space, then X is preconnected iff X

is connected. In the following example, We first show that the converse of Proposition

4.11 need not be true. Then we show that if a connected UB A−space doesn’t satisfy

the separation axiom T0, then X need not be preconnected.

Example 4.12 : Let X = {1, 2, 3, 4, 5} and τ = {X, ∅, {1}, {4, 5}, {3, 4, 5}, {1, 2, 4, 5},
{1, 4, 5}, {1, 3, 4, 5}}. Then X is a UB A−space and doesn’t satisfy the separation axiom

T0. Let U = {1, 2, 3, 4} and V = {5}. Then U, V are preopen sets, so X is prediscon-

nected. Now [X] = {[1], [2], [3], [4]} and τs = {[X], ∅, {[1]}, {[4]}, {[3], [4]}, {[1], [2], [4]},
{[1], [4]}, {[1], [3], [4]}. So [X] is connected and hence preconnected. Moreover X is con-

nected.

5. Mixed Generalized Connectedness

Let X be a non-empty set and m1,m2 two minimal structures on X. Then X is said

to be m1 −m2−connected [16], if X cannot be expressed as a union of two non-empty

disjoint subsets S1, S2 ∈ X such that S1 ∈ m1 and S2 ∈ m2. It is obvious that the

notion m1 − m2−connectedness is equivalent to the notion m2 − m1−connectedness.

If m1 = m2, then X is said to be m1−connected [16]. For special cases, if (X, τ) is

a topological space and if m1 = τ (resp. τα, PO(X), SO(X), BO(X), SPO(X)),

then m1−connected is denoted as connected (resp. α−connected [?], P−connected

[24], S−connected [22], γ−connected [6], SP−connected [23]). The mixed generalized

connectedness is introduced in [25]. IF m1 = τ and m2 = τα (resp. m2 = PO(X),

m2 = SO(X), m2 = BO(X), m2 = SPO(X)), then m1 −m2−connected is denoted as

τ − τα−connected (resp. τ −P−connected, τ −S−connected, τ −SP−connected). [25]

Similarly, we define α−P−connectedness, α−S−connectedness, α−SP−connectedness,
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S − P−connectedness, S − SP−connectedness, and P − SP−connectedness, (for more

information, see [25]).

Proposition 5.1 [25] : In any topological space X the following statements are equiv-

alent:

(1) (X, τ) is S-connected.

(2) (X, τ) is τ -SP-connected.

(3) (X, τ) is τ -B-connected.

(4) (X, τ) is τ -S-connected.

(5) (X, τ) is α-S-connected.

(6) (X, τ) is α-SP-connected.

(7) (X, τ) is α-B-connected.

(8) (X, τ) is S-B-connected.

(9) (X, τ) is S-SP-connected.

(10) (X, τ) is S-P-connected.

(11) (X, τ) is hyperconnected.

Corollary 5.2 : Let X be an A−space. Then for J ∈ {S, τ − SP, τ −B, τ − S, α−
S, α− SP, α−B, S − P, S −B, S − SP } X is J-connected A−space iff its shadow

space [X] is J-connected.

Proof : From Proposition 4.8, X is hyperconnected iff [X] is hyperconnected. 2

Proposition 5.3 : Let X be a UB A−space. If V (x) = V (y) for all x, y ∈M , then X

is J−connected for J ∈ {S, τ − SP, τ −B, τ − S, α− S, α− SP, α−B, S − P, S −
B, S − SP}.
Proof : Direct from Propositions 4.10 and Proposition 5.1. 2

Proposition 5.4 [25] : Let (X, τ) be a topological space. Then the following statements

are equivalent:

(1) X is SP -connected.
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(2) X is S-connected and P-connected.

(3) X is B-SP-connected.

(4) X is P-SP-connected.

(5) X is γ-connected.

Proposition 5.5 : If an A−space X is J-connected, then [X] is J-connected for J ∈
{SP, B − SP, P − SP, γ}
Proof : From Proposition 5.4 X is J-connected iff X is S-connected and P -connected.

Then by Proposition 4.11 and Corollary 5.2, [X] is S-connected and P -connected and

hence J-connected. 2

The converse of the above proposition need not be true as shown in the following

example:

Example 5.6 : Let X = {1, 2, 3, 4} and τ = {∅, X, {3, 4}, {1, 3, 4}, {2, 3, 4}}. Then

U = {1, 2, 3} and V = {4} are two nonempty disjoint preopen subsets of X. So X is not

P−connected and hence is not J−connected for any J ∈ {SP, B − SP, P − SP, γ}.
The shadow space [X] = {[1], [2], [3]} with τs = {∅, [X], {{3}}, {{1}, {3}}, {{1}, {3}}}.
It is obvious that [X] is both S-connected and P -connected and hence J-connected.

Proposition 5.7 [25] : The following statements are equivalent for any topological

space X :

(1) X is connected.

(2) X is τ − τα-connected.

(3) X is τ − P -connected.

Proposition 5.8 : Let X be an A−space. Then for J ∈ {τ−τα, τ−P}X is J-connected

iff [X] is J-connected.

Proof : Direct from Propositions 4.1 and Proposition 5.7. 2
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