International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 153-164

MIXED CONNECTEDNESS VIA SHADOW SPACES

HISHAM MAHDI¹, S. NADA² AND RIYAD M. MUAMAR³

 ¹ Islamic University of Gaza, PO Box 108, Gaza, Palestine E-mail: hmahdi@iugaza.edu.ps
² Department of Mathematics, Menoufia University, Shebeen El-Khom, Egypt E-mail: shokrynada@yahoo.com
³ Department of Mathematics Al Aqsa University, Gaza, Palestine E-mail: rm.muamar@alaqsa.edu.ps

Abstract

Shadow spaces are quotient spaces of A-spaces. They provide a better understanding to the concept of A-spaces using their corresponding posets. In this paper, we introduce and investigate new types of A-space called upper bounded and lower bounded A-spaces. Then we study connectedness and types of mixed connectedness. we prove that an A-space X is i - j-connected iff its shadow space [X] is i - j-connected, for $i, j \in \{\alpha, P, S, SP, \gamma\}$.

1. Introduction

An Alexandroff space (briefly A-space) (or minimal neighborhood space) X is a topological space in which the arbitrary intersection of open sets is open. In these spaces,

Key Words : Alexandroff spaces, Shadow spaces, Generalized open sets, α -open sets, Preopen sets, Connectedness, Mixed connectedness, Preconnectedness, Semi-connectedness, α -connectedness, β -connectedness.

AMS Subject Classification : 54D05, 54F05, 54D99.

© http://www.ascent-journals.com

each element x has a minimal open neighborhood set V(x) which is the intersection of all open sets containing x. For every $T_o A$ -space (X, τ) , there is a corresponding poset (X, \leq_{τ}) in one to one and onto way, where each one of them is completely determined by the other. If (X, \leq) is a poset, then $\mathcal{B} = \{\uparrow x : x \in X\}$ forms a base for a T_0 Alexandroff topology on X denoted by τ_{\leq} . Moreover, if (X, τ) is an A-space, we define the preorder \leq_{τ} , called (Alexandroff) specialization pre-order as follows: $a \leq_{\tau} b$ if and only if $a \in \{b\}$. This specialization pre-order is a partial order if and only if (X, τ) is T_o . So, we consider $(X, \tau(\leq))$ to be a T_o A-space (X, τ) together with its specialization order \leq . We see that $\forall x \in X, V(x)$ equals $\uparrow x$; the up set of x in the corresponding poset and $\overline{x} = \downarrow x$; the down set of x. A poset (X, \leq) satisfies the ascending chain condition (ACC) if for any increasing sequence $x_1 \leq x_2 \leq \cdots \leq x_n \leq \cdots$ in X, there exists $k \in \mathbb{N}$ such that $x_k = x_{k+1} = \cdots$. The dual of (ACC) is the descending chain condition (DCC). If a poset satisfies both ACC and DCC, we say that X is of finite chain condition (FCC). Given a poset (X, \leq) , the set of all maximal elements is denoted by M(X) (or simply M) and the set of all minimal elements is denoted by m(X) (or simply m). Moreover, for each $x \in X$, we define \hat{x} to be the set of all maximal elements grater than or equal to x and \check{x} to be the set of all minimal elements less than or equal to x. That is, $\hat{x} = \uparrow x \cap M$ and $\check{x} = \downarrow x \cap m$.

A T_o A-space whose corresponding poset satisfies the ACC is called Artinian T_o A-space, and whose corresponding poset satisfies the DCC is called Noetherian T_o A-space [11]. An upper bounded T_0 A-space is introduced as a generalization of Artinian T_0 A-spaces. A T_0 A-space is an upper bounded T_0 A-space (briefly a UB T_0 A-space) [5]S if every chain of points in the corresponding posets is bounded above. There is a detail study of these spaces in [12]. A T_0 A-space is an lower bounded T_0 A-space (briefly an LB T_0 A-space) [5] if every chain of points in the corresponding poset is bounded below. If X is a topological space and \mathfrak{D} a partition of X, then \mathfrak{D} can be topologized as follows: $\mathfrak{F} \subseteq \mathfrak{D}$ is open in \mathfrak{D} iff $\bigcup_{F \in \mathfrak{F}} F$ is open in X. The topology $\tau_{\mathfrak{D}}$ on \mathfrak{D} is called the quotient topology of X induced by \mathfrak{D} , and the open sets U in X where $U = \bigcup \{F \in \mathfrak{F} : \mathfrak{F} \in \tau_{\mathfrak{D}}\}$ are called saturated. It should be noted that not all open sets in \mathfrak{X} are saturated. Nevertheless, each saturated open set has a corresponding open set in \mathfrak{D} . So there is a one to one correspondence between $\tau_{\mathfrak{D}}$ and the collection of all saturated open sets in X. For a topological space X, an equivalence relation \sim can be defined on X as follows: $x \sim y$ iff x and y cannot be separated by open sets. The set of all equivalence classes [X] forms a partition on X with quotient topology satisfies the separation axiom T_0 . Again, not all open sets in X are saturated. In [?], it was proved that if the topology on X is Alexandroff, then each open set in X is saturated with respect to the equivalence relation \sim . Hence there is a one to one correspondence between τ on X and the quotient topology on [X]. So, the quotient topology on [X] is called the shadow topology of τ and denoted by τ_s . The shadow space $([X], \tau_s)$ is a T_0 A-space and has a corresponding poset $([X], \leq_s)$. For two classes [a], [b] in [X], we have $[a] \leq [b]$ iff $b \in V(a)$ iff $V(b) \subseteq V(a)$ iff $a \in \overline{b}$. For a subset $A \subseteq X$, we define $[A] = \{[a]: a \in A\}$. It may happen that $A \neq B$ but [A] = [B]. In Some of our previous studies see [10] and [13], we observed that the relation between A-spaces and their shadow spaces is very interesting and used this relation in introducing new definitions and concepts defined on A-shadow spaces and carry over to any A-space. We gave a study of preopen, semi-open, and α - open sets on A-spaces. Then we proved that an A-space is connected (compact) iff its shadow space [X] is connected (compact). From now on, and for any A-space (X, τ) , we will consider its A-shadow space $([X], \tau_s)$.

2. Preliminaries

A subfamily m_x of a power set $\mathcal{P}(X)$ of a nonempty set X is said to be a minimal structure on X, if $\emptyset, X \in m_x$ and $\bigcup A_\alpha \in m_x$ whenever $A_\alpha \in m_x$. The sets in m_x are called m_x -open sets, and the sets where their complements in m_x are called m_x -closed sets. It is clear that an arbitrary intersection of m_x -closed sets is m_x -closed set. For $A \subseteq X$, we define m_x interior and m_x closure of A as follows:

$$m_x - Int(A) = \bigcup \{ U : U \subseteq A \text{ and } U \in m_x \}, \text{ and}$$

 $m_x - Cl(A) = \bigcap \{ F : A \subseteq F \text{ and } X \setminus F \in m_x \}.$

It is obvious that $m_x - Int(A)$ is the largest m_x -open set inside A and $m_x - Cl(A)$ is the smallest m_x -closed set containing A. Let (X, τ) be a topological space. A subset A of X is said to be α -open [18] (resp. preopen [2], semi-open [17], b-open [3] (equiv. γ -open [1]), β -open [16] (equiv. semi-preopen [4])) if $A \subseteq \overline{A^{\circ}}$ (resp. $A \subseteq \overline{A}^{\circ}$, $A \subseteq \overline{A^{\circ}}$, $A \subseteq \overline{A^{\circ}} \cup \overline{A^{\circ}}$, $A \subseteq \overline{\overline{A^{\circ}}}$). A set F is called j-closed for $j \in \{\alpha, \text{ semi, pre, } b, \beta\}$ if $X \setminus F$ is j-open. A set F is called j-clopen for $j \in \{\alpha, \text{ semi, pre, } b, \beta\}$ if F is both j-open and j-closed. The family of all $\alpha-$ open (resp. preopen, preclosed, semi-open, semi-closed, b-open, b-closed, $\beta-$ open, $\beta-$ closed) is denoted by τ_{α} (resp. PO(X), PC(X), SO(X), SC(X), BO(X), BC(X), SPO(X), SPC(X)). We have the following facts: The collection τ_{α} forms a topology on X [18]. $\tau_{\alpha} = PO(X) \cap SO(X)$ [21]. $PO(X) \cup SO(X) \subseteq$ $BO(X) \subseteq SPO(X)$ [3]. $\tau \subseteq \tau_{\alpha}$ (resp. $\tau \subseteq JO(X)$ for $J \in \{S, P, B, SP\}$). For $j \in \{\text{semi, pre, } b, \beta\}$, the union (intersection) of any family of j-open (j-closed) sets is j-open (j-closed). Thus for $J \in \{S, P, B, SP\}$, JO(X) is a minimal structure on X. If a minimal structure $m_x = \tau_{\alpha}$ (resp. PO(X), SO(X), BO(X), SPO(X)), then $m_x - Int(A)$ is denoted by $Int_{\alpha}(A)$ (resp. pInt(A), sInt(A), bInt(A), $\beta Int(A)$). Similarly $m_x - Cl(A)$ is denoted by $Cl_{\alpha}(A)$ (resp. pCl(A), sCl(A), bCl(A), $\beta Cl(A)$). If X is a $UB T_0 A-$ space, then $PO(X) = \tau_{\alpha}$ and $PO(X) \subseteq SO(X)$. [12]

Proposition 2.1 [12] : Let X be a UB T_0 A-space, and A is a preopen subset of X. Then A is a UB T_0 A-space.

Proposition 2.2 [12] : Let X be a T_0 UB A-space. A set $A \subseteq X$ is preopen iff $\hat{x} \subseteq A$ for every $x \in A$.

Proposition 2.3 [12] : let X be a UB T_{\circ} A-space. Then A is semi-open set if and only if $\hat{x} \cap A \neq \emptyset \ \forall x \in A$.

Proposition 2.4 [13]: Let X be an A-space and $A \subseteq X$. Then [A] as a subspace of the shadow space [X] is the same as the shadow space of the subspace (A, τ_A) of X.

Proposition 2.5 [13]: Let X be an A-space and $A \subseteq X$. Then A is preopen iff [A] is preopen.

3. Upper Bounded *A*-spaces

In order to generalize some of basic concepts and ideas to be known in any A-space, we first start with a chain. A chain is a concept that related to the category of posets, and hence related in some sence to A-spaces that satisfy the separation axiom T_0 . In the following definitions, we generalize this concept and others to any A-space.

Definition 3.1: Let X be an A-space. A subset $C \subseteq X$ is said to be a chain if for every $x, y \in C$ either $V(x) \subseteq V(y)$ or $V(y) \subseteq V(x)$. A subset $B \subseteq X$ is said to be bounded above (resp. below) if there exist $z \in X$ such that $V(z) \subseteq V(x)$ (resp. $V(x) \subseteq V(z)$) for every $x \in B$. B is bounded if it is bounded above and bounded below. **Definition 3.2**: An A-space X is called an upper (resp. a lower) bounded (briefly, UB, (resp. LB)) if every chain in X is bounded above (resp. bounded below). X is bibounded (briefly BB) if every chain in X is bounded, and hence X is both UB and LB.

One can easily prove the following:

Proposition 3.3: If C is a chain in an A-space X, then the set [C] is a chain in the corresponding poset $([X], \leq_s)$ of the shadow space [X].

Propoition 3.4: Let X be an A-space and C a chain in X. Then C is bounded above iff the chain [C] is bounded above in the poset $([X], \leq_s)$.

Corollary 3.5 : An A-space X is UB iff its shadow space [X] is UB.

Remark 3.6: Let X be a UB T_0 A-space and Y an A-space such that X = [Y]. Then Y is a UB A-space. In other words, all A-spaces, where X is their shadow space are UB A-spaces.

Proposition 3.7: Let X be a UB A-space and A a preopen subset of X. Then the subspace A is a UB A-space.

Proof: [A] is a precent subset of the shadow space [X]. So by Proposition 2.1 [A] is a $UB T_0 A$ -space. Hence by Corollary 3.5, A is a UB A-space.

Definition 3.8 [13] : Let X be an A-space. An element $x \in X$ is said to be maximal (resp. minimal) if V(x) = V(z) whenever $V(z) \subseteq V(x)$ (resp. whenever $V(z) \supseteq V(x)$). We denote the set of maximal elements of X by M(X) (or simply M), and the set of minimal elements of X by m(X) (or simply m). We define $\hat{x} = V(x) \cap M$ and $\check{x} = \bar{x} \cap m$. The following theorems, in various forms and with simple modifications, are proved for Artinian (Notherian) A-spaces in [13]. They still true in UB A-space without essential change in the mechanics of the proofs. The heart of the proofs of the theorems lie in the observation that; for both Artinian and UB A-spaces, $M \neq \emptyset$ and $\hat{x} \neq \emptyset$ for all $x \in X$. Similarly, $m \neq \emptyset$ and $\check{x} \neq \emptyset$ for all $x \in X$ for both Notherian and LB A-spaces. **Proposition 3.9** : Let X be a UB A-space, then $M \neq \emptyset$.

Proposition 3.10 : Let X be a UB (resp. LB) A-space, then M is open (resp. m is closed) set in X .

Proposition 3.11 : If X is a UB (resp. a LB) A-space, then $x \in M$ iff $[x] \in [M]$ (resp. $x \in m$ iff $[x] \in [m]$.)

Proposition 3.12: Let X be a UB A-space. Then $V(x) \subseteq M$ iff $[V(x)] \subseteq [M]$.

Proposition 3.13: Let X be a UB A-space and A a preopen subset of X. Then

- (1) [M(A)] = M[A].
- (2) Cl(A) = Cl(M(A)).
- (3) $M(A) \subseteq M$.

Proposition 3.14: Let X be a UB A-space, and let $A \subseteq X$. If A is open (resp. closed), then $\hat{x} \subseteq A$ (resp. $\check{x} \subseteq A$) for all $x \in A$.

Proposition 3.15: If X is a UB (resp. a LB) A-space, then $[M] = M_s$ (resp. $[m] = m_s$).

Proposition 3.16 : If X is a UB (resp. LB)A-space, then $\hat{x} \neq \emptyset$ (resp. $\check{x} \neq \emptyset$).

Proposition 3.17: Let X be a UB A-space, $A \subset X$. If $\hat{x} \subseteq A$ for every $x \in A$, then A is preopen.

Proof : If $\hat{x} \subseteq A$, then $\widehat{[x]} \subseteq [A]$. By Proposition 2.2 [A] is preopen. Hence by Proposition 2.5 we get that A is preopen. \Box

Proposition 3.18: Let X be a UB A-space. If a set $A \subseteq X$ is semi-open, then $\hat{x} \cap A \neq \emptyset$ for all $x \in A$.

Proof: If $x \in A$, then $x \in Cl(Int(A))$. So $V(r) \subseteq V(x)$ for some $r \in Int(A)$, which implies that $V(r) \subseteq A$. Take $y \in \hat{r} \subseteq M$. Then $V(y) \subseteq V(r) \subseteq V(x)$. Therefore $y \in \hat{x} \cap A$.

The converse of the above two propositions need not be true as the following example shows:

Example 3.19: Let $X = \{1, 2, 3, 4, 5\}$ and $\tau = \{\emptyset, X, \{3\}, \{4, 5\}, \{3, 4, 5\}\}$. So $M = \{3, 4, 5\}$. If $A = \{1, 2, 4, 5\}$, then A is preopen. Moreover $\hat{1} = V(1) \cap M = \{3, 4, 5\} \nsubseteq A$. If $B = \{1, 2, 5\}$, then B is not semi-open. Moreover $\hat{1} = \hat{2} = \{3, 4, 5\}$, and $\hat{5} = \{4, 5\}$. So $\hat{x} \cap B \neq \emptyset$ for every $x \in B$.

4. Connectedness

A topological space (X, τ) is said to be *connected* (resp. *preconnected*) if X cannot be expressed as a union of two non-empty and disjoint open (resp. preopen) subsets of X. X is said to be *disconnected* (resp. *predisconnected*) if it is not connected (resp. preconnected). When X is connected, X contains a nontrivial clopen set. X is *hyperconnected* if every non-empty open subset of X is dense. If X is not hyperconnected, then it is *hyperdisconnected*.

158

Proposition 4.1 [13] : An A-space X is connected iff [X] is connected.

Propostion 4.2 [10]: Let X be an A-space, $A \subseteq X$. Then A is dense iff [A] is dense in [X].

Proposition 4.3 [11] : Let X be a T_0 A-space. If X has a dense subset consisting of a single point, then X is connected.

Proposition 4.4: Let X be an A-space. If [x] is dense in X, for some $x \in X$, then X is connected.

Proof: By Proposition 4.2, $\{[x]\}$ is dense in [X], so by Proposition 4.3, [X] is connected and hence X is connected.

Proposition 4.5 [12]: Let X be a UB T_0 A-space and |M| > 1. If X is connected, then \overline{x} is not open for all $x \in M$.

Proposition 4.6: Let X be a connected UB A-space. If |M| > 1 and there is $x, y \in M$ such that $V(x) \neq V(y)$, then Cl(x) is not open for all $x \in M$.

Proof: [X] is connected, $[x], [y] \in [M]$ and $[x] \neq [y]$. So |[M]| > 1. By Proposition 4.5, $Cl_s([x])$ is not open and so [Cl(x)] is not open in [X]. Therefore Cl(x) is not open in X.

Recall that in any topological space, $Int(A \cup B) = Int(A) \cup Int(B)$ whenever $\overline{A} \cap \overline{B} = \emptyset$. **Proposition 4.7**: Let X be a UB A-space with a set of maximal elements M. Then X is connected iff for any proper subset C of $M, \overline{C} \cap \overline{M \setminus C} \neq \emptyset$.

Proof: If $\overline{C} \cap \overline{M \setminus C} = \emptyset$, then $\overline{C} \subseteq X \setminus (\overline{M \setminus C}) = ((M \setminus C)^c)^o = (M^c \cup C)^o = (M^c^\circ)^o \cup C^o = (\overline{M})^c \cup C^o$. Since $\overline{C} \cap \overline{M}^c = \emptyset$, then $\overline{C} \subseteq C^o$ and so C is clopen nonempty set. Conversely, let $X = P \cup Q$ where P and Q are two nonempty disjoint open subsets of X. Let $C = M \cap P$. By Proposition 3.13 (3), C = M(P). This implies that $\overline{C} = \overline{M(P)} = \overline{P} = P$. Similarly $\overline{M \setminus C} = Q$. Therefore $\overline{C} \cap \overline{M \setminus C} = \emptyset$.

Proposition 4.8 [10] : An A-space X is hyperconnected iff its shadow space [X] is hyperconnected.

Proposition 4.9 [16] : Let X be a T_0 A-space. If X contains a maximum element \top , then X is hyperconnected.

Proposition 4.10: Let X be a UB A-space. If V(x) = V(y) for all $x, y \in M$, then X is hyperconnected.

Proof: If V(x) = V(y) for all $x, y \in M$, then [x] = [y]. Hence |[M]| = 1. Equivalently [X] contains a top element. Therefore by Proposition 4.5, [X] is hyperconnected. By

Proposition 4.8, X is hyperconnected.

Proposition 4.11 : Let X be an A-space. If X is preconnected, then [X] is preconnected.

Proof: If [X] is predisconnected, then there is disjoint preopen sets [U], [V] such that $[X] = [U] \cup [V]$. By Proposition 2.5, U and V are preopen sets. Let $U^* = \bigcup \{ [x] : x \in U \}$ and $V^* = \bigcup \{ [x] : x \in V \}$. Then, we have $X = U^* \cup V^*$, $U^* \cap V^* = \emptyset$ and U^* , V^* are preopen sets. Thus X is predisconnected.

Directly from the definition, if a topological space X is preconnected, then it is connected. In [?], it was proved that if X is a $UB T_0 A$ -space, then X is preconnected iff X is connected. In the following example, We first show that the converse of Proposition 4.11 need not be true. Then we show that if a connected UB A-space doesn't satisfy the separation axiom T_0 , then X need not be preconnected.

Example 4.12: Let $X = \{1, 2, 3, 4, 5\}$ and $\tau = \{X, \emptyset, \{1\}, \{4, 5\}, \{3, 4, 5\}, \{1, 2, 4, 5\}, \{1, 4, 5\}, \{1, 3, 4, 5\}\}$. Then X is a UB A-space and doesn't satisfy the separation axiom T_0 . Let $U = \{1, 2, 3, 4\}$ and $V = \{5\}$. Then U, V are preopen sets, so X is predisconnected. Now $[X] = \{[1], [2], [3], [4]\}$ and $\tau_s = \{[X], \emptyset, \{[1]\}, \{[4]\}, \{[3], [4]\}, \{[1], [2], [4]\}, \{[1], [3], [4]\}$. So [X] is connected and hence preconnected. Moreover X is connected.

5. Mixed Generalized Connectedness

Let X be a non-empty set and m_1, m_2 two minimal structures on X. Then X is said to be $m_1 - m_2 - connected$ [16], if X cannot be expressed as a union of two non-empty disjoint subsets $S_1, S_2 \in X$ such that $S_1 \in m_1$ and $S_2 \in m_2$. It is obvious that the notion $m_1 - m_2$ -connectedness is equivalent to the notion $m_2 - m_1$ -connectedness. If $m_1 = m_2$, then X is said to be m_1 -connected [16]. For special cases, if (X, τ) is a topological space and if $m_1 = \tau$ (resp. $\tau_{\alpha}, PO(X), SO(X), BO(X), SPO(X)$), then m_1 -connected is denoted as connected (resp. α -connected [?], \mathcal{P} -connected [24], \mathcal{S} -connected [22], γ -connected [6], SP-connected [23]). The mixed generalized connectedness is introduced in [25]. IF $m_1 = \tau$ and $m_2 = \tau_{\alpha}$ (resp. $m_2 = PO(X)$, $m_2 = SO(X), m_2 = BO(X), m_2 = SPO(X)$), then $m_1 - m_2$ -connected is denoted as $\tau - \tau_{\alpha}$ -connected (resp. $\tau - P$ -connected, $\tau - SP$ -connected). [25] Similarly, we define $\alpha - P$ -connectedness, $\alpha - S$ -connectedness, $\alpha - SP$ -connectedness,

S - P-connectedness, S - SP-connectedness, and P - SP-connectedness, (for more information, see [25]).

Proposition 5.1 [25] : In any topological space X the following statements are equivalent:

- (1) (X, τ) is S-connected.
- (2) (X, τ) is τ -SP-connected.
- (3) (X, τ) is τ -B-connected.
- (4) (X, τ) is τ -S-connected.
- (5) (X, τ) is α -S-connected.
- (6) (X, τ) is α -SP-connected.
- (7) (X, τ) is α -B-connected.
- (8) (X, τ) is S-B-connected.
- (9) (X, τ) is S-SP-connected.
- (10) (X, τ) is S-P-connected.
- (11) (X, τ) is hyperconnected.

Corollary 5.2: Let X be an A-space. Then for $J \in \{S, \tau - SP, \tau - B, \tau - S, \alpha - S, \alpha - SP, \alpha - B, S - P, S - B, S - SP \} X$ is J-connected A-space iff its shadow space [X] is J-connected.

Proof: From Proposition 4.8, X is hyperconnected iff [X] is hyperconnected. **Proposition 5.3**: Let X be a UB A-space. If V(x) = V(y) for all $x, y \in M$, then X is J-connected for $J \in \{S, \tau - SP, \tau - B, \tau - S, \alpha - S, \alpha - SP, \alpha - B, S - P, S - B, S - SP\}.$

Proof : Direct from Propositions 4.10 and Proposition 5.1. \Box

Proposition 5.4 [25]: Let (X, τ) be a topological space. Then the following statements are equivalent:

(1) X is SP-connected.

- (2) X is S-connected and P-connected.
- (3) X is B-SP-connected.
- (4) X is P-SP-connected.
- (5) X is γ -connected.

Proposition 5.5: If an A-space X is J-connected, then [X] is J-connected for $J \in \{SP, B - SP, P - SP, \gamma\}$

Proof: From Proposition 5.4 X is J-connected iff X is S-connected and P-connected. Then by Proposition 4.11 and Corollary 5.2, [X] is S-connected and P-connected and hence J-connected.

The converse of the above proposition need not be true as shown in the following example:

Example 5.6: Let $X = \{1, 2, 3, 4\}$ and $\tau = \{\emptyset, X, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$. Then $U = \{1, 2, 3\}$ and $V = \{4\}$ are two nonempty disjoint preopen subsets of X. So X is not P-connected and hence is not J-connected for any $J \in \{SP, B - SP, P - SP, \gamma\}$. The shadow space $[X] = \{[1], [2], [3]\}$ with $\tau_s = \{\emptyset, [X], \{\{3\}\}, \{\{1\}, \{3\}\}\}, \{\{1\}, \{3\}\}\}$. It is obvious that [X] is both S-connected and P-connected and hence J-connected.

Proposition 5.7 [25] : The following statements are equivalent for any topological space X:

- (1) X is connected.
- (2) X is $\tau \tau^{\alpha}$ -connected.
- (3) X is τP -connected.

Proposition 5.8: Let X be an A-space. Then for $J \in \{\tau - \tau^{\alpha}, \tau - P\}$ X is J-connected iff [X] is J-connected.

Proof : Direct from Propositions 4.1 and Proposition 5.7.

References

- El-Atik A. A., A study of some types of mappings on topological spaces, Master thesis, Faculty of science, Tanta University, Tanta, Egypt (1997).
- [2] Mashhour A. S., Abd El-Monsef M. E. and El-Deeb S. N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [3] Andrijevic D., On b-open sets, Math. bechak, 48 (1996), 59-64.
- [4] Andrijevic D., On Semi-preopen sets, Mat. Vensik, 38 (1986), 24-32.
- [5] Rose D., Scible G., Danielle Walsh, Alexandroff spaces, Journal of Advanced studies in Topolgy, 24 (2012), 41-43.
- [6] Ekici E., On separated sets and connected spaces, Demonstratio Math., 40 (2007), 209-217.
- [7] Hewitt E., A problem of set theoretic topology, Duke Math. J., 10 (1943), 309-333.
- [8] Mahdi H., Connectedness and mixed connectedness on T_0 Alexandroff spaces, International Electronic Journal of Pure and Applied Mathematics, 9(2) (2015), 55-67.
- [9] Mahdi H. B. and Alatrash M. S., Charactrization of Lower Separation Axioms in T_0 Alexandroff spaces, Proceeding of the first conference on mathematical science, (April 2006), Zarga Private Uni., Jordan, 77-89.
- [10] Mahdi H., Shadow spaces of Alexandroff spaces, Journal of Alaqsa University, 13(2) (June 2006), 436-444.
- [11] Mahdi H. and El atrash M., On T₀-Alexandroff spaces, Journal of Islamic University, 13(2) (June 2005), 19-46.
- [12] Mahdi H.and Lubna Elostath, On upper bounded T_0 Alexandroff spaces, Int. J. Contemprary Math Science, 9(8) (2014), 361-374.
- [13] Mahdi H., Nada S. and Muamar Riyad, On Alexandroff shadow spaces, British Journal of Mathematics and Computer Science, 7(6) (2015), 429-438.
- [14] Reilly I. L., Vamanamurthy M. K., Connectedness and strong semi-continuity, Cas. pest. mat., 109 (1984), 261-265.
- [15] Ganster M., Preopen sets and resolvable spaces, Kyungpook Math. J., 27(2) (1987), 135-143.
- [16] Abd El-Monsef M. E., El-Deeb S. N., Mahmoud R. A., β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [17] Levine N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [18] Njastad D., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [19] Alexandroff P., DiskreteRäume, Mat. Sb, (N.S), 2 (1937), 501-518.
- [20] Willard S., General Topology, University of Alberta, Addison Wesley Publishing Company, London, (1970).
- [21] Noiri T., On α -continuous functions, Cas. Pest. Mat., 109 (1984), 118-126.

- [22] Pipitone V., Russo G., Spazi semiconnessi a spazi semiaperti, Rend. Circ. Mat. Palermo, 24 (1975), 273-285.
- [23] Popa V. and Noiri T., Weakly β-continuous functions, An. Univ. Timisoara Ser. Mat. Inform., 32 (1994), 83-92.
- [24] Popa V., Properties of H-almost continuous functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 31(79) (1987), 163-168.
- [25] Zbigniew Duszynski, β -Connectedness and S-connectedness of topological spaces, Mathematics Bechk journal, 63(2) (2011), 115-126.